Package 'CopulaInference'

Title: Estimation and Goodness-of-Fit of Copula-Based Models with Arbitrary Distributions
Description: Estimation and goodness-of-fit functions for copula-based models of bivariate data with arbitrary distributions (discrete, continuous, mixture of both types). The copula families considered here are the Gaussian, Student, Clayton, Frank, Gumbel, Joe, Plackett, BB1, BB6, BB7,BB8, together with the following non-central squared copula families in Nasri (2020) <doi:10.1016/j.spl.2020.108704>: ncs-gaussian, ncs-clayton, ncs-gumbel, ncs-frank, ncs-joe, and ncs-plackett. For theoretical details, see, e.g., Nasri and Remillard (2023) <arXiv:2301.13408>.
Authors: Bouchra R. Nasri [aut, cre, cph], Bruno N Remillard [aut]
Maintainer: Bouchra R. Nasri <[email protected]>
License: GPL-3
Version: 0.5.0
Built: 2025-02-05 03:40:33 UTC
Source: https://github.com/cran/CopulaInference

Help Index


Auxiliary functions

Description

This function computes the empirical margins, their left-limits, Kendall's tau and Spearman's rho for arbitrary data. Slower than AuxFunC based on C.

Usage

AuxFun(data)

Arguments

data

Matrix (x,y) of size n x 2

Value

tau

Kendall's tau

rho

Spearman's rho

Fx

Empirical cdf of x

Fxm

Left-limit of the empiricial cdf of x

Fy

Empirical cdf of y

Fym

Left-limit of the empiricial cdf of y

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances, arXiv 2301.07267.

Examples

data(simgumbel)
out=AuxFun(simgumbel)

Auxiliary functions using C

Description

This function computes the empirical margins, their left-limits, Kendall's tau and Spearman's rho for arbitrary data

Usage

AuxFunC(data)

Arguments

data

Matrix (x,y) of size n x 2

Value

tau

Kendall's tau

rho

Spearman's rho

Fx

Empirical cdf of x

Fxm

Left-limit of the empirical cdf of x

Fy

Empirical cdf of y

Fym

Left-limit of the empirical cdf of y

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances, arXiv 2301.07267.

Examples

data(simgumbel)
out=AuxFunC(simgumbel)

Empirical bivariate cdf

Description

This function computes the empirical joint cdf evaluated at all points (y1,y2)

Usage

BiEmpCdf(data, y1, y2)

Arguments

data

Matrix (x1,x2) of size n x 2

y1

Vector of size n1

y2

Vector of size n2

Value

cdf

Empirical cdf

Examples

data(simgumbel)
out=BiEmpCdf(simgumbel,c(0,1),c(-1,0,1))

Quantile function

Description

This function computes the inverse of the cdf of a finite distribution for a vector of probabilities.

Usage

CdfInv(u, y, Fn)

Arguments

u

Vector of probabilities

y

Ordered values

Fn

Cdf

Value

x

Vector of quantiles

Examples

y=c(0,1,2)
Fn = c(0.5,0.85,1)
out=CdfInv(c(1:9)/10,y,Fn)

Density of non-central squared copula

Description

This function computes the density of the non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 >0 .

Usage

dncs(data, family, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

family

Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-joe", "ncs-plackett”.

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

vector of copula parameter and non-centrality parameter a1,a2 >0

Value

pdf

Density

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

dncs(c(0.5,0.8),"ncs-clayton",par=c(2,1,2))

Density of Plackett copula

Description

This function computes the density of the Plackett copula with parameter par>0.

Usage

dplac(data, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

Copula parameter >0

Value

pdf

Density

Examples

dplac(c(0.5,0.8),par=3,rotation=270)

Empirical univariate cdf

Description

This function computes the empirical cdf evaluated at all sample points

Usage

EmpCdf(x)

Arguments

x

Observations

Value

Fx

Empirical cdf

Fxm

Left limit of the empirical cdf

Ix

Indicator of atoms



Examples

data(simgumbel)
out=EmpCdf(simgumbel[,1])

Options for the estimation of the parameters of bivariate copula-based models

Description

Sets starting values, upper and lower bounds for the parameters. The bounds are based on those in the rvinecopulib package.

Usage

est_options(family, tau = 0.5)

Arguments

family

Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8","ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe","ncs-plackett".

tau

Estimated Kendall's tau to compute a starting point (default is 0.5)

Value

LB

Lower bound for the parameters

UB

Upper bound for the parameters

start

Starting point for the estimation

References

Nagler & Vatter (2002). rvinecopulib: High Performance Algorithms for Vine Copula Modeling. Version 0.6.2.1.3

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA.

Nasri & Remillard (2023). Copula-based dependence measures for arbitrary data, arXiv 2301.07267.

Examples

out = est_options("bb8")

Parameter estimation for bivariate copula-based models with arbitrary distributions

Description

Computes the estimation of the parameters of a copula-based model with arbitrary distributions, i.e, possibly mixtures of discrete and continuous distributions. Parametric margins are allowed. The estimation is based on a pseudo-likelihood adapted to ties.

Usage

EstBiCop(
  data = NULL,
  family,
  rotation = 0,
  Fx = NULL,
  Fxm = NULL,
  Fy = NULL,
  Fym = NULL
)

Arguments

data

Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided.

family

Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8","ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe","ncs-plackett".

rotation

Rotation: 0 (default value), 90, 180, or 270.

Fx

Marginal cdf function applied to X (default is NULL).

Fxm

Left-limit of marginal cdf function applied to X default is NULL).

Fy

Marginal cdf function applied to Y (default is NULL).

Fym

Left-limit of marginal cdf function applied to Y (default is NULL).

Value

par

Copula parameters

family

Copula family

rotation

Rotation value

tauth

Kendall's tau corresponding to the estimated parameter

tauemp

Empirical Kendall's tau (from the multilinear empirical copula)

rhoSth

Spearman's rho corresponding to the estimated parameter

rhoSemp

Empirical Spearman's tau (from the multilinear empirical copula)

loglik

Log-likelihood

aic

Aic value

bic

Bic value

data

Matrix of values (could be (Fx,Fy))

F1

Cdf of X (Fx if provided, empirical otherwise)

F1m

Left-limit of F1 (Fxm if provided, empirical otherwise)

F2

Cdf of Y (Fy if provided, empirical otherwise)

F2m

Left-limit of F2 (Fym if provided, empirical otherwise)

ccdfx

Conditional cdf of X given Y and it left limit

ccdfxm

Left-limit of ccdfx

ccdfy

Conditional cdf of Y given X and it left limit

ccdfym

Left-limit of ccdfy

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

set.seed(2)
data = matrix(rpois(20,1),ncol=2)
out0=EstBiCop(data,"gumbel")

Kendall's tau and Spearman's rho

Description

This function computes Kendall's tau and Spearman's rho for arbitrary data. These are invariant by increasing mappings.

Usage

EstDep(data)

Arguments

data

Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations.

Value

tau

Kendall's tau

rho

Spearman's rho

References

Nasri (2022). Test of serial dependence for arbitrary distributions. JMVA

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances, arXiv 2301.07267.

Examples

data(simgumbel)
out=EstDep(simgumbel)

Quantile function of margins

Description

This function computes the quantile of seven cdf used in Nasri (2022).

Usage

Finv(u, k)

Arguments

u

Vector of probabilities

k

Marginal distribution: [1] Bernoulli(0.8), [2] Poisson(6), [3] Negative binomial with r = 1.5, p = 0.2, [4] Zero-inflated Poisson (10) with w = 0.1 and P(6.67) otherwise, [5] Zero-inflated Gaussian, [6] Discretized Gaussian, [7] Discrete Pareto(1)

Value

x

Vector of quantiles

Author(s)

Bouchra R. Nasri January 2021

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

Examples

x = Finv(runif(40),2)

Family number corresponding to VineCopula package

Description

Computes the number associated with a copula family (without rotation)

Usage

fnumber(family)

Arguments

family

Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8".

Value

fnumber

Number

References

Nagler et al. (2023). VineCopula: Statistical Inference of Vine Copulas, version 2.4.5.

Examples

fnumber("bb1")

Goodness-of-fit for bivariate copula-based models with arbitrary distributions

Description

Goodness-of-fit tests for copula-based models for data with arbitrary distributions. The tests statistics are the Cramer-von Mises statistic (Sn), the difference between the empirical Kendall's tau and the theoretical one, and the difference between the empirical Spearman's rho and the theoretical one.

Usage

GofBiCop(
  data = NULL,
  family,
  rotation = 0,
  Fx = NULL,
  Fxm = NULL,
  Fy = NULL,
  Fym = NULL,
  B = 100,
  n_cores = 1
)

Arguments

data

Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided.

family

Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8","ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe","ncs-plackett".

rotation

Rotation: 0 (default value), 90, 180, or 270.

Fx

marginal cdf function applied to X (default is NULL).

Fxm

left limit of marginal cdf function applied to X default is NULL).

Fy

marginal cdf function applied to Y (default is NULL).

Fym

left limit of marginal cdf function applied to Y (default is NULL).

B

Number of bootstrap samples (default 100)

n_cores

Number of cores to be used for parallel computing (default is 1).

Value

pvalueSn

Pvalue of Sn in percent

pvalueTn

Pvalue of Tn in percent

pvalueRn

Pvalue of Rn in percent

Sn

Value of Cramer-von Mises statistic Sn

Tn

Value of Kendall's statistic Tn

Rn

Value of Spearman's statistic Rn

cpar

Copula parameters

family

Copula family

rotation

Rotation value

tauth

Kendall's tau (from the multilinear theoretical copula)

tauemp

Empirical Kendall's tau (from the multilinear empirical copula)

rhoth

Spearman's rho (from the multilinear theoretical copula)

rhoemp

Empirical Spearman's rho (from the multilinear empirical copula)

parB

Bootstrapped parameters

loglik

Log-likelihood

aic

AIC value

bic

BIC value

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri & Remillard (2023). Goodness-of-fit and bootstrapping for copula-based random vectors with arbitrary marginal distributions.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

data = rvinecopulib::rbicop(10,"gumbel",rotation=0,2)
out=GofBiCop(data,family="gumbel",B=10)

Conditional distribution of non-central squared copula

Description

This function computes the conditional distribution of the non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 >0 .

Usage

hncs(data, cond_var, family, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

cond_var

Conditioning variable (1 or 2)

family

Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-joe", "ncs-plackett”.

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

vector of copula parameter and non-centrality parameter a1,a2 >0

Value

h

Conditional cdf

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

hncs(c(0.5,0.8),1,"ncs-clayton",270,c(2,1,2))

Conditional distribution of Plackett copula

Description

This function computes the conditional distribution of the Plackett copula with parameter par>0.

Usage

hplac(data, cond_var, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

cond_var

Conditioning variable (1 or 2)

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

Copula parameter >0

Value

h

Conditional cdf

Examples

hplac(c(0.5,0.8),1,270,3)

Identifiability of two-parameter copula families

Description

Determines if a copula family is identifiable with respect to the empirical margins. One-parameter copula families ("gaussian","gumbel","clayton","frank","plackett","joe") are identifiable whatever the margins. The rank of the gradient of the copula on the range of the margins is evaluated at 10000 parameter points within the lower and upper bounds of the copula family.

Usage

identifiability(data = NULL, family, rotation = 0, Fx = NULL, Fy = NULL)

Arguments

data

Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided.

family

Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8","ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe","ncs-plackett".

rotation

Rotation: 0 (default value), 90, 180, or 270.

Fx

Marginal cdf function applied to X (default is NULL).

Fy

Marginal cdf function applied to Y (default is NULL).

Value

out

True or False

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

set.seed(1)
data = matrix(rpois(20,1),ncol=2)
out = identifiability(data,"gumbel")

Cdf for non-central squared copula

Description

This function computes the distribution function of the non-central squared copula (ncs) associated a with one-parameter copula with parameter cpar, and parameters a1, a2 >0 .

Usage

pncs(data, family, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

family

Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-joe", "ncs-plackett”.

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

vector of copula parameter and non-centrality parameter a1,a2 >0

Value

cdf

Value of cdf

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

pncs(c(0.5,0.8),"ncs-clayton", par=c(2,1,2),rotation=270)

Cdf for Plackett copula

Description

This function computes the distribution function of the Plackett copula with parameter par>0.

Usage

pplac(data, rotation = 0, par)

Arguments

data

Matrix (x,y) of size n x 2

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

Copula parameter >0

Value

cdf

Value of cdf

Examples

pplac(c(0.5,0.8),270,3)

Computes unique values, cdf and pdf

Description

This function computes the unique values, cdf and pdf for a series of data.

Usage

preparedata(x)

Arguments

x

Vector

Value

values

Unique (sorted) values

m

Number of unique values

Fn

Empirical cdf of the unique values

fn

Empirical pdf of the unique values

References

B.R. Nasri (2022). Tests of serial dependence for arbitrary distributions

C. Genest, J.G. Neslehova, B.N. Remillard and O. Murphy (2019). Testing for independence in arbitrary distributions.

#'@examples x = c(0,0,0,2,3,1,3,1,2,0) out = prepare_data(x)


Spearman's rho for Plackett copula

Description

Computes the theoretical Spearman's rho for Plackett copula

Usage

rhoplackett(cpar, rotation = 0)

Arguments

cpar

Copula parameter; can be a vector.

rotation

Rotation: 0 (default value), 90, 180, or 270.

Value

rho

Spearman's rho

References

Remillard (2013). Statistical Methods for Financial Engineering. CRC Press

Examples

rhoplackett(3,rotation=90)

Simulation of non-central squared copula

Description

This function computes generates a bivariate sample from a non-central squared copula (ncs) associated with a one-parameter copula with parameter cpar, and parameters a1, a2 >0 .

Usage

rncs(n, family, rotation = 0, par)

Arguments

n

Number of observations

family

Copula family: "ncs-gaussian", "ncs-clayton", "ncs-frank", "ncs-gumbel", "ncs-joe", "ncs-plackett”.

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

vector of copula parameter and non-centrality parameter a1,a2 >0

Value

U

Observations

References

Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.

Examples

rncs(100,"ncs-clayton",par=c(2,1,2))

Generates observations from the Plackett copula

Description

This function generates observations from a Plackett copula with parameter par>0.

Usage

rplac(n, rotation = 0, par)

Arguments

n

Number of pairs to be generated

rotation

Rotation: 0 (default value), 90, 180, or 270.

par

Copula parameter >0

Value

U

Matrix of observations

Examples

rplac(10,rotation=90,par=2)

Simulated data

Description

Simulated data from a Gumbel copula with parameter 2, Bernoulli margin for X1 and zero-inflated Gaussian margin for X2.

Usage

data(simgumbel)

Format

Data frame of numerical values

Examples

data(simgumbel)
plot(simgumbel,xlab="X1", ylab="X2")

Goodness-of-fit statistics

Description

Computation of goodness-of-fit statistics (Cramer-von Mises and the Kendall's tau)

Usage

statcvm(object)

Arguments

object

Object of class 'EstBiCop'.

Value

Sn

Cramer-von Mises statistic

Tn

Kendall's statistic

Rn

Spearman's statistic

tauemp

Empirical Kendall's tau

tauth

Kendall's tau of the multilineat theoretical copula

rhoemp

Empirical Spearman's rho

rhoth

Spearman's rho of the multilineat theoretical copula

Y1

Ordered observed values of X1

F1

Empirical cdf of Y1

Y2

Ordered observed values of X2

F2

Empirical cdf of Y2

cpar

Copula parameters

family

Copula family

rotation

Rotation value

n

Sample size

References

Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.

Examples

set.seed(2)
data = matrix(rpois(20,1),ncol=2)
out0 = EstBiCop(data,"gumbel")
out = statcvm(out0)

Kendall's tau for a copula family

Description

This function computes Kendall's tau for a copula family

Usage

taucop(family_number, cpar, rotation = 0)

Arguments

family_number

Integer from 1 to 10

cpar

Copula parameters

rotation

Rotation: 0 (default value), 90, 180, or 270.

Value

tau

Kendall's tau

Examples

taucop(4,2,270) # Gumbel copula

Kendall's tau for Plackettfamily

Description

This function computes Kendall's tau for Plackett family using numerical integration

Usage

tauplackett(cpar, rotation = 0)

Arguments

cpar

Copula parameter >0

rotation

Rotation: 0 (default value), 90, 180, or 270.

Value

tau

Kendall's tau

Examples

tauplackett(2,270)